INTRODUCTION

In this chapter we will present a theory of the financing of investment in a modern capitalist economy. Our exposition will closely follow the approach developed by Hyman Minsky, arguably the most important contributor to our understanding of this topic. While Minsky began his research in the 1950s and continued to refine his theory until his death in 1996, his approach was largely ignored by the mainstream of the profession until the global financial crisis that began with a collapse of the subprime mortgage market in the US in 2007. This does not mean that his work was unknown, as it was long embraced by Post Keynesian economists and by Wall Street practitioners who recognized the real-world relevance of Minsky’s arguments. Indeed, a few conventional economists—including some Nobel laureates (some of whom were personal friends of Minsky)—were influenced by his ideas. Still, as we prepare this chapter, there is little doubt that interest in his theory is at an all-time peak. Even if the spreading global financial crisis is successfully contained this time around, it is likely that analyses will incorporate a substantial dose of Minsky’s ideas for many years to come.

It should be noted that what we present here is an alternative to the standard approach that was developed from the early 1970s, based on the “efficient markets hypothesis”. We will not develop a detailed treatment of that theory here. Like all approaches derived from the old neoclassical theory, it relegates money and finance to the sidelines. As basic macroeconomics presented in the mainstream principles textbooks teaches, neoclassical theory presumes “money neutrality”—the notion that at least in the long run, money only determines nominal prices. Various devices have been posited to allow money to have short run “real” effects on relative prices, real output, levels of employment, or the composition of output. However, the market is continually striving to eliminate these non-neutralities as it seeks market clearing equilibria consistent with tastes and technologies. The primary barrier preventing market clearing is, of course, the government. The efficient markets hypothesis extends the analysis to alternative methods of financing activity. Whereas Milton Friedman had famously argued that good neoclassical analysis might as well assume that money is dropped from helicopters, orthodox finance theory tried to show that shedding that assumption would make little difference. Whether productive activity is financed by retained earnings, debt, or equity would, on the basis of “rigorous” assumptions, be irrelevant for “real” outcomes: “prior to the introduction of informational asymmetries, the framework resembles a simple real business cycle model; financial structure is irrelevant” (Gertler 1988: 581).

Minsky vehemently denied the relevance of such theory, at least for the modern capitalist economy with complex, expensive, and long-lived capital assets. In our kind of economy, money can never be neutral—not in the short run nor even in the long run. The method used to finance positions in assets is of critical importance both for theory as well as for real world outcomes. In particular, use of debt sets up a stream of obligations that must be fulfilled to maintain solvency. The problem is that at the time these commitments are
made, neither party to the agreement can be sure that the contract for future payment will be fulfilled. Further, failure by one party to meet contractual payments can cause financial distress for the party expecting to receive payment. For this reason, one default can generate a snowball of defaults, as creditors holding bad debts fail to make good on their own debts. As defaults spread, the value of financial assets falls—since every financial asset represents a claim on an income stream or on cash expected from the sale of an underlying asset. As such, the value of each financial asset depends on the expected payments, which, if not forthcoming, causes asset values to fall.

Thus, if an unconstrained snowball of defaults affects asset prices generally, what Irving Fisher called a “debt deflation” can take hold. Both Irving Fisher and Minsky believed that such a process occurred during the 1930s, and that this is what made the “Great Depression” so severe. It must be emphasized that all mainstream theory rules out of existence such processes and argues in any case that deflation helps the economy by increasing real balances (and Friedman (1969) went as far as to argue that permanent deflation should be sought by central banks). As Goodhart and Tsomocos (2007) argues, “rigorous” mainstream theory assumes that defaults never occur, meaning that deflation cannot generate a financial crisis when debtors find the real burden of debt rising because nominal prices and incomes are falling. This is precisely what made the Great Depression so bad—and what allows mainstream economists such as Friedman to claim that financial crises are solely due to policy mistakes, not to any fundamental forces operating in modern economies. For this reason, Minsky argued that mainstream theory is irrelevant and even dangerous if it is applied to the world in which we actually live.

In the next section we present the investment theory of the business cycle developed by J.M. Keynes, and then examine Minsky’s extension of that theory that added a financial theory of investment. This allowed Minsky to analyze the evolution of the modern capitalist economy over time. Indeed, the financial theory of investment plays a crucial role in Minsky’s hypothesis that financially complex economies tend toward fragility—what is well-known as Minsky’s financial instability hypothesis. In the subsequent section, we update Minsky’s approach to finance with a more detailed examination of asset pricing and of the evolution of the banking sector. In the final section we briefly review the insights that such an approach can provide for analysis of the current global financial crisis.

THE INVESTMENT THEORY OF THE CYCLE AND MINSKY’S FINANCIAL THEORY OF INVESTMENT

Keynes’s *General Theory* gave a central role to the investment decision in the determination of the aggregate level of effective demand, which in turn is the primary factor generating the equilibrium level of employment and output. As the principles textbooks put it, investment is the *driving* variable that operates through a *multiplier* to establish total income. The size of the multiplier is rather mechanically calculated as the inverse of the marginal propensity to save, although more complicated expositions can take account of leakages to imports and taxes. Hence, an increase of investment causes income and thus consumption to rise until saving rises to equality to the new level of
investment. The level of investment is a function of the marginal efficiency of capital (essentially the discounted future profits) weighed against the market interest rate, which equilibrates the supply of and demand for money. All of this is far too well known to require further exposition. And all of it can be found in Keynes’s book. However, this caricature does not come close to capturing Keynes’s theory of investment.

To really understand Keynes’s theory, one must turn to Chapter 17 of the General Theory—a rather complex exposition that is normally avoided by all but the most serious of his followers. In that chapter, the investment decision is incorporated within his liquidity preference theory of asset prices, or to put it another way, his theory of “own rates”. He argued that “for every durable commodity we have a rate of interest in terms of itself,--a wheat-rate of interest, a copper-rate of interest, a house-rate of interest, even a steel-plant-rate of interest.” (Keynes 1936 pp. 222-223) Each of these own rates can be stated in terms of money, which typically carries the “greatest of the own-rates”, hence, “rules the roost” because money has special, peculiar, properties. (Keynes 1936 p. 223; see also Kregel 1997) The expected return on holding any asset measured in monetary terms is $q-c+l+a$, where q is the asset’s expected yield, c is carrying costs, l is liquidity, and a is expected price appreciation (or depreciation). The total return is used to calculate a marginal efficiency for each asset, including money. The composition of returns varies by asset, with most of the return to illiquid assets such as capital consisting of $q-c$, while most of the return to holding liquid assets consists of the (subjectively evaluated) l.

Finally, changing expectations differentially impact marginal efficiencies of different kinds of assets, depending on the composition of the returns. Increased confidence about future economic performance will raise the qs on capital assets while lowering the subjective values assigned to liquid positions (hence, the l falls), so the marginal efficiency of capital rises relative to that of assets that get much of their return from l. In that case, capital assets will be produced (investment rises, inducing the “multiplier” impact) and the full range of asset prices adjusts. Thus, expectations about the future go into determining the equilibrium level of output and employment.

Indeed, we can see that his liquidity preference theory of asset prices is inextricably linked to the theory of the multiplier and thus the theory of effective demand. Only if the marginal efficiency of some asset that can be produced using labor (plant, capital equipment, commercial and residential buildings, private infrastructure) exceeds the marginal efficiency on money will investment take place. (Orthodox interpretations of Keynes present this very simplistically as a relation between “the” interest rate, and the marginal efficiency of capital.) This then raises effective demand through the multiplier. The new equilibrium level of effective demand (and hence of employment, income and output) will be reached when all own rates are equal to the standard set by money’s return.

We want to emphasize here that Keynes’s notion of equilibrium is not the same as that used in orthodox analysis. For Keynes, equilibrium implies a “state of rest” in which there is no further inducement to change one’s behavior (in this case, a position in which firms are satisfied with the level of investment and of employment and production); it does not imply that all markets have cleared. Most importantly, Keynes’s notion of
equilibrium does not imply full employment of labor resources, which is the key implication of the orthodox identification of equilibrium as simultaneous clearing of all markets since involuntary unemployment is ruled out by assumption. Note also that for Keynes, equilibrium is an analytical device used to analyze the forces that determine the aggregate levels of income, employment, and output, as well as the prices of assets. There is no expectation that we will ever observe a “state of rest” in the real world. This is why Keynes’s Chapter 12, which is so full of colorful analogies—such as “whirlwinds of speculation”—is so important. Expectations play a critical role in determining asset prices (thus, also in determining effective demand) and these are liable to disappointment and to fluctuation. Thus, even if we ever achieved a position in which every member of the economy were satisfied with her portfolio of assets, it would be a fleeting instant. Attempts to adjust portfolios cause asset prices to change which generates shifts of spending and employment from one sector to another, and also affects the total levels of spending and employment (Kregel 1976, 1986).

Minsky believed that Keynes’s investment theory of the cycle is incomplete because it did not really analyze how investment is financed when the marginal efficiency of some capital asset exceeds the marginal efficiency of money. There seems to be an implicit assumption in the General Theory that the investment project will get funded. While Keynes did deal with this in a bit more detail in several publications after 1936, most of his effort went toward explaining why saving cannot be a source of finance. Hence, Minsky’s most important contribution was to add the “financial theory of investment” to Keynes’s “investment theory of the cycle”. Figure 1 provides a graphical illustration of Minsky’s theory. The two key building blocks are the “two price system”, and the “lender’s and borrower’s risk”. Following Keynes, Minsky distinguished between a price system for current output and one for asset prices. Current output prices can be taken as determined by “cost plus mark-up”, set at a level that will generate profits so long as the administered price can be maintained with adequate sales. This price system covers consumer goods and services, investment goods and services, exports, and even goods and services purchased by government. In the case of investment goods, the current output price is effectively a supply price of capital—the price just sufficient to induce a supplier to provide new capital assets (P_I). However, this simplified analysis can be applied only to purchases of capital that can be financed out of internal funds (such as sales revenue from on-going operations). If external (borrowed) funds are needed, then the supply price of capital also includes explicit finance costs—most importantly the interest rate, but also all other fees and costs—that is, total supply price (P_{d}) rises above the price administered by suppliers (P_I) due to “lender’s risk” that is covered by the finance costs of borrowed funds. In Figure 1, this is represented by an upward shift in the P_I-curve, for any quantity of investment goods above O_{IF}; the quantity of investment good that is expected to be funded by expected internal funds (Q_{IF}): $O_{IF} = Q_{IF}/P_I$.

There is a second price system for assets that can be held through time. Except for money (the most liquid asset), these assets are expected to generate a stream of income and possibly capital gains. Here, Minsky follows Keynes’s treatment in Chapter 17 described above. The important point is that the prospective income stream cannot be known with certainty, thus depends on subjective expectations. By taking the price of capital assets (P_A) as a point of reference, we obtain a demand price for capital assets (P_{dA}) from this...
asset price system: how much would one pay for the asset, given expectations concerning the future net revenues that it can generate?

Again, however, this is too simplistic because it ignores the financing arrangements. Minsky argued that the price one is willing to pay depends on the amount of external finance required—greater borrowing exposes the buyer to higher risk of insolvency. This is why “borrower’s risk” must also be incorporated into demand prices. Unlike lender’s risk, this “cost” is subjectively determined and is not written into any contracts. One can think of it as a “margin of safety”: if one expects an asset to generate a stream of returns with a discounted value equal to $1 million, one would not be willing to pay more than $750,000 for the asset. The margin of safety provides a cushion ($250,000 in this case) to ensure that debt contracts created to finance the position in the asset can be serviced even if revenues turn out to be less than expected. That way, one will avoid bankruptcy unless the margin of safety proves to be too small. Obviously, there is no hard and fast rule governing the appropriate margin of safety because the borrower’s risk cannot be calculated precisely for a future that is yet to unfold.

![Diagram of Determination of the Level of Investment](image)

Figure 1. Determination of the level of investment

The demand for investment good (O_{ld}) is determined when $P_{ld} = P_{Is}$, not when $P_K = P_T$ (Tobin’s q is equal to one). Tobin’s q rules out the importance of uncertainty and funding structure for the determination of investment. Note that the demand price declines with level of investment demand, whereas the supply price increase with the latter. This is due to Kalecki’s principle of increasing risk, which states that, given expected internal funds and given conventions about the appropriate leverage-ratio, entrepreneurs and bankers assume that it is more and more risky to invest as the expected level of external funding increases. Thus, as the level of investment increases above O_{IF}, entrepreneurs become less willing to invest (the demand price declines as borrower’s risk increases) and bankers’ demand becomes more and more stringent as external funding increases (the supply price increases as the lender’s risk increases).

Investment can proceed only if the demand price (adjusted for borrower’s risk) exceeds the supply price (adjusted for lender’s risk) of capital assets. Because these prices include margins of safety, they are affected by expectations concerning unknowable outcomes. In the beginning of a recovery from a severe recession, margins are large as expectations are pessimistic; over time, if an expansion generates returns that exceed the projections these
margins prove to be larger than necessary. Thus, margins will be reduced to the degree that projects are generally successful, exceeding expectations.

Minsky created a famous taxonomy of financing profiles undertaken by investing firms: hedge (prospective income flows are expected to cover interest and principle with a safe margin); speculative (near-term income flows will cover only interest, although it is expected that either finance costs will fall, that income flows will rise, or that assets can be sold at a higher price later—in which case revenues will be sufficient to cover principle); and Ponzi (near-term receipts are insufficient to cover interest payments so that debt increases because the Ponzi unit borrows to cover interest payments). Over the course of an expansion, these financial stances evolve from largely hedge to include ever rising proportions of speculative and even Ponzi positions. Some Ponzi positions are undertaken voluntarily (due, for example, to expectations that debt can be refinanced at much more favorable terms, or that large capital gains can be realized from asset price appreciation), some are fraudulent (a “pyramid” scheme is an example, in which a crook dupes ever larger numbers of suckers to provide the funds to pay the earliest participants), and some result from disappointment (revenues are lower than expected, or finance costs rise unexpectedly).

Attempts to raise leverage and to move to more speculative positions can be frustrated: if results turn out to be more favorable than expected, an investor attempting to engage in speculative finance could remain hedge because incomes realized are greater than were anticipated. This is because as aggregate investment rises, this has a multiplier impact on effective demand which can raise sales beyond what had been expected. Later, Minsky explicitly incorporated the Kaleckian result that in the truncated model, aggregate profits equal investment plus the government’s deficit. Thus, in an investment boom, profits would be increasing along with investment, helping to validate expectations and encouraging even more investment. This added strength to his proposition that the fundamental instability in the capitalist economy is upward—toward a speculative frenzy, as investment generates profits, which breeds more investment.

In addition, in the early 1960s, he had argued that impacts on private sector balance sheets would depend on the stance of the government’s balance sheet. (Minsky 1963) A government-spending led expansion would allow the private sector to expand without

1 Following national accounting identities one has:

\[W + \Pi + T = C + I + G + X - J \]

With, \(\Pi \) the gross profit of firms after corporate tax, \(W \) employees’ disposable wage income, and \(T \) taxes, \(C \) the consumption level (of capitalists and workers), \(I \) the level of investment, \(G \) the level of government spending, \(X \) exports and \(J \) imports. Subtracting \(W \) and \(T \) from each side, and noting \(C_C \) the consumption of capitalists one gets:

\[\Pi = C_C - S_W + I + DEF + NX \]

With \(S_W \) the saving level of wage earners (\(S_W = W - C_W \)), \(DEF \) the government fiscal deficit, and \(NX \) net exports. Kalecki (1971 pp. 78-79) derived a causal relation out of the identity (thus transforming the identity into an equality) by arguing that \(\Pi \) is not under the control of firms whereas variables on the right side depends on discretionary choices.
creating fragile balance sheets—government deficits would add safe treasury debt to private portfolios even as it raised profits (through the expanded version of the Kalecki equation) and income and employment through the “government spending multiplier”. A robust expansion, however, would tend to cause revenues from progressive income taxes to grow faster than private sector income so that the government budget would “improve” (move toward surplus) and the private sector balance would deteriorate (move toward deficit). Once he added the Kalecki equation to his exposition, he could also explain how this countercyclical movement of the budget would automatically stabilize profits—limiting both the upside in a boom, and the downside in a slump.

Further, with the Kalecki view of profits incorporated in his investment theory of the cycle, Minsky argued that investment is forthcoming today only if investment is expected in the future—since investment in the future will determine profits in the future (in the skeletal model). Because investment today produces profits to validate the decisions undertaken “yesterday” to invest, expectations about “tomorrow” affect ability to meet commitments that were made “yesterday” when financing the existing capital assets. There is thus a complex temporal relation involved in Minsky’s approach to investment that could be easily disturbed. By linking this to the “two price” approach described above, Minsky made it clear that anything that lowers expected future profitability can push the demand price of capital below the supply price, reducing investment and today’s profits below the level necessary to validate past expectations on which demand prices were based when previous capital projects were undertaken. This also means that the margins of safety that had been included in borrower’s and lender’s risk can prove to be inadequate, leading to revisions of desired margins of safety going forward. The economy can spiral ever downward into a deepening recession.

Minsky continually improved his approach to banking and finance, recognizing the futility of Fed attempts to control the money supply. This is because banks would try to avoid and evade constraints imposed by the Fed in order to obtain the profits available from providing finance to firms. He also expanded the analysis so that all entities were treated like banks—he argued that anyone can create money; the problem is to get it accepted (1986 p. 69)—acquiring assets by issuing liabilities. He argued that while the Fed had been created to act as lender of last resort, making business debt liquid, the Fed no longer discounted paper. (1986 p. 47) Indeed, most reserves supplied by the Fed come through open market operations, which greatly restricts the Fed’s ability to ensure safety and soundness of the system by deciding which collateral to accept, and by taking a close look at balance sheets of borrowers. Instead, the Fed had come to rely on Friedman’s simplistic monetarist view that the primary role of the Fed is to “control” the money supply and thereby the economy as a whole—which it cannot do, as attempts to constrain reserves only induce innovative bank practices and encourage expansion of “non-bank” sources of finance, ultimately requiring lender of last resort interventions and even bailouts that validate riskier practices. (1986 p. 94) Together with countercyclical deficits to maintain demand, lender of last resort policy not only prevents deep recession, but also creates a chronic bias toward speculative booms.

EXTENDING MINSKY: ASSET PRICES AND FINANCE
Asset prices play a crucial role in the determination of the investment level because the latter depends on a double arbitrage. On the one hand, following the logic of Keynes’s Chapter 17 presented above, it is assumed that capitalists make arbitrages among all types of assets (financial and capital assets) in order to get what is expected to be the greatest monetary return, given liquidity, maturity, and risk concerns. Contrary to the monetarist view, however, this does not mean that all assets are perfectly substitutable—the gross substitution axiom does not hold—because the logic of capitalism and uncertainty creates a preference for money and its close substitutes. Capitalism rewards economic activities that generate a high monetary return (physical return to a productive capital asset is irrelevant if its output cannot be sold for a certain sum of money) and higher uncertainty lowers the qs and increase the ls as described earlier. On the other hand, there is an arbitrage between old capital assets (i.e. existing capital equipment) and new capital assets (i.e. investment goods to be newly produced) and so those existing assets matter.

The price of existing capital equipment is determined indirectly by the market quotation of shares and bonds of the owning firms and by the price at which mergers and acquisitions are settled. Aside from making a difference between marginal productivity-theory and liquidity-preference theory, one may classify the literature on asset pricing according to the assumed behaviors of individuals. This latter classification implies making a distinction among the rational, irrational and convention approaches to asset pricing. Some authors would say that q, c, l and a are determined by “rational” individuals who use the guidance of a priori fundamentals. This theory is closely associated to the efficient market theory and requires that informational problems exist (asymmetric information, lack of computational power or other problems) in order to explain the emergence of bubbles and of over-investment. Otherwise according to the rational view, information is optimally used, and so asset prices are always at their fundamental value, and the level of investment is always at its optimal value: “the primary role of the capital market is allocation of ownership of the economy’s capital stock [... It is [...] a market in which prices provide accurate signals for resource allocation” (Fama 1970 p. 383). The irrational approach argues that asset pricing is mostly done by individuals who show little concern for the existing a priori fundamentals. For some of the followers of this approach (behavioral finance), this is a behavioral anomaly, but for others (e.g. Galbraith) it is a normal behavior. In any case, irrational behaviors generate waves of panics and bubbles, which lead to periods of over- and under-investment. The rational and irrational approaches have been used extensively in the mainstream literature (mostly in conjunction with the productivity-theory of asset pricing) and do provide some insights. But they miss some important points developed in Chapter 12 of Keynes’s *General Theory*.

As Keynes notes, asset pricing depends on “a conventional valuation which is established as the outcome of the mass psychology of a large number of ignorant individuals” and “this behaviour is not the outcome of a wrong-headed propensity” (Keynes 1936 pp. 154-155). In this third theory of asset pricing, the convention theory, there are no a priori fundamentals toward which asset prices will tend inexorably. Individuals are ignorant, not because they do not know how to behave rationally, but because the future is not written in stone, it is uncertain. In order to reduce ignorance about an unknowable future,
fundamentals are created through social interactions in order to provide a vision of the future that justifies current decisions. This has two main implications. First, as in the irrational approach, there can be a self-justification process in which the established fundamental value tends toward existing asset prices—whatever prices are, individuals accept them as in some sense natural. Second, current decisions may lead to the concretization of the future contained in the convention—there may be a self-fulfilling process as the conventions cause individuals to behave in a manner such that the future unfolds as expected.

In conformity with Keynes, Minsky applied the convention approach (Keynes’s Chapter 12) to the liquidity preference theory of asset price (Keynes’s Chapter 17) and noted that conventional behaviors and liquidity preference go hand in hand in an uncertain world that rewards monetary accumulation. A rational approach to the liquidity preference theory of asset prices (as in Tobin 1958) applies only in a world without uncertainty; and an irrational approach to the same theory (Galbraith 1961) may apply only during the periods of frenzy and panic. The productivity theory of asset pricing only applies to a co-operative economy—as Keynes argued, this is one in which money might exist, but it doesn’t matter. One may wonder what the convention approach to the liquidity preference theory of asset prices looks like. Among the most recent authors, Wray (1992) and Orléan (1999) provide the foundation for such an approach to asset pricing. The market price of assets, as determined by $q, c, l,$ and $a,$ is compared to a normal price which provides an anchor for economic units. The normal price is socially determined through an imitation process that rests, not on following the previous behavior of individuals (irrational approach, cascade of information theory), but on anticipating the average opinion regarding the appropriate market price—as in Keynes’s famous “beauty contest”.

Aside from the theory of asset pricing, there have been developments in the financial system in the 1980s and 1990s that must be incorporated within the financial theory of investment. Minsky conceived his theory mostly in a compartmentalized financial system in which banks followed a commitment model to banking business. Within banks, there are two well-defined desks, the loan-officer desk (whose task is to judge the quality of the project proposed by potential borrowers and to tame the optimism of the latter) and the position-making desk (whose task is to finance and to refinance the positions taken by the bank). In the commitment model, the point of the bank is to establish a long-term relationship with borrowers based on trust and recurring lending agreements, and to make money based on interest-rate spreads between deposit rates and lending rates. This model has now been replaced by an originate-and-distribute banking model, and Minsky noted that today there are “banks without loan officers” (Minsky 1981 p. 15). Most of the profit-making activities have been shifted toward the position-making desk. Indeed, banks now make most of their profits from fees obtained from selling and servicing structured financial instruments (mortgage-backed securities, collateralized debt obligations, etc.) rather than from interest-rate spreads. Banks no longer look for a long-term individualized relationship with recurring borrowers; the relation is impersonal and judged in minutes through a credit-scoring method (Kregel 2008).
This new banking model adds two additional novelties to the dynamics of the margins of safety. First, development of financial fragility proceeds at an accelerated pace because banks and credit-rating agencies have an incentive to overestimate creditworthiness in order to stimulate the distribution of structured financial instruments. Second, credit enhancement techniques like credit subordination, excess spread and overcollateralization allow structured financial instruments (like private-label mortgage-backed securities), to have a tranche with an AAA credit rating even though it is structured on the basis of junk assets (Adelson 2006). Thus, a high proportion of Ponzi financing may exist from the very beginning of the economic expansion; that is, a prolonged period of expansion may no longer be necessary to explain the dynamics of margins of safety. All that is necessary is a favorable trend for the prices of the assets underlying the Ponzi financing process. Recent developments in the housing market provide a clear example of this kind of dynamic.

THE FINANCIAL THEORY OF INVESTMENT AND THE CURRENT GLOBAL FINANCIAL CRISIS

Chapter 24 of Keynes’s *General Theory* had identified two fundamental flaws of the capitalist system: an inability to achieve full employment and excessive inequality. Minsky emphasized a third flaw implicit in Keynes’s theory: instability is a normal result of modern financial capitalism. (Minsky 1986, p. 101, 250) Further, stability cannot be achieved—even with appropriate policy—because it changes behavior in ways that promote evolution toward fragility. For this reason, Minsky rejected “Keynesian” policy that promoted “fine-tuning” of the economy—even if policy did achieve transitory stability, that would set off processes to reintroduce instability. Hence, “[t]he policy problem is to devise institutional structures and measures that attenuate the thrust to inflation, unemployment, and slower improvements in the standard of living without increasing the likelihood of a deep depression”. (1986 p. 295) However, success could never be permanent; policy would have to continually adapt to changing circumstances.

Minsky argued that the relative stability of the Post-War period had led to development of Money Manager Capitalism—a much more unstable version of modern capitalism. In a prescient paper written in 1987 (Minsky 2008), Minsky predicted the explosion of home mortgage securitization that eventually led to the US subprime crisis in 2007. Indeed, he was one of the few commentators who understood the true potential of securitization, or, what came to be called the “originate and distribute” model. Rather than holding mortgages (and other types of loans), banks would simply originate the loans and then would sell them to investors such as pension funds and hedge funds. In principle, all mortgages could be packaged into a variety of risk classes, with differential pricing to cover risk. Investors could choose the desired risk-return trade-off. Thrifts and other regulated financial institutions would earn fee income for loan origination, for assessing risk, and for servicing the mortgages. Two decades later, Minsky’s predictions were validated with a vengeance, as securitization spread far beyond mortgages to include student loans, credit card debt, auto loans and leases, and a range of other debts.

2 Note that this section draws heavily on Wray (2008).
By mid 2008, many of these markets were hit with rising defaults far exceeding what had been expected.

Minsky (2008) had argued that securitization resulted from two developments. First, it was due to the globalization of finance, as securitization creates financial assets available for purchase by foreign investors with no direct access to American real assets. Minsky argued that the long depression-free period that followed WWII created a global glut of managed money seeking returns. (Previous to WWII, depressions had been associated with debt deflations that wiped out financial wealth.) Packaged securities with risk weightings assigned by respected rating agencies were appealing for global investors trying to achieve the desired proportion of dollar-denominated assets. When problems began in US subprime securities, the financial crisis quickly spread to the rest of the world because these were included in many global portfolios.

Second, over the post-war period, the importance of banks (narrowly defined as financial institutions that accept deposits and make loans) was rapidly eroded in favor of “markets”. (The bank share of all financial assets fell from around 50% in the 1950s to around 25% in the 1990s.) This development, itself, was encouraged by the experiment in monetarism (1979-82, that decimated the regulated—bank and thrift—portion of the sector in favor of relatively unregulated “markets”, mostly large Wall Street investment banks), but it was also spurred by continual erosion of the portion of the financial sphere that had been ceded by rules, regulations, and tradition to banks. The growth of competition on both sides of banking business—checkable deposits at non-bank financial institutions that could pay market interest rates; and the rise of the commercial paper market that allowed firms to bypass commercial banks—squeezed the profitability of banking. Minsky (2008) observed that banks appear to require a spread of about 450 basis points between interest rates earned on assets less that paid on liabilities. This covers the normal rate of return on capital, plus the required reserve “tax” imposed on banks (reserves are non-earning assets), and the costs of servicing customers.

On the other hand, financial markets can operate with much lower spreads because they are exempt from required reserve ratios, regulated capital requirements, and much of the costs of relationship banking. At the same time, the financial markets were freer from the New Deal regulations that had made financial markets safer. Not only did this mean that an ever larger portion of the financial sector was free of most regulations, but that competition from “markets” forced policy-makers to relax regulations on banks. By the time of the real estate boom in the US from the mid 1990s through 2007 that eventually led to the subprime mortgage crisis, there was no longer any essential difference between a “commercial bank” and an “investment bank”. The whole housing sector that had been made very safe by the New Deal reforms had been transformed into a huge global casino. Minsky argued (1986 p. 45) that the New Deal reforms related to home finance had been spurred by a common belief that short-term mortgages, typically with large balloon payments, had contributed to the Great Depression; ironically, the “innovations” in home mortgage finance leading up to the speculative boom largely recreated those conditions.
As bank competitiveness was damaged, firms turned directly to managed money for finance of activities. The managed money owned by pension and hedge funds was subject to far less oversight, and did not have the same capacity to assess credit worthiness. Further, they operated with far greater leverage ratios (a bank can typically leverage its own equity by a factor of about 10, while hedge funds operate with leverage ratios of 30 and sometimes much more; this means they use one dollar of their own funds and borrow $29 to increase the size of bets). All of this greatly increased fragility of the financial system. In normal expansions, high corporate profits mean that firms can rely more on relatively safe internal funds to finance activities. However, over the expansions of the 1990s and 2000s, firms greatly increased their use of external funds, so that debt ratios grew. While the 1980s are well-known for leveraged buy-outs and use of “junk bonds”, there was actually much more “junk” issued during the Bush, junior, expansion after 2005.

As we write, the US financial sector remains in a crisis that is spreading around the world. Many commentators have referred to the crisis as a “Minsky moment”, questioning whether we have become a “Ponzi nation” (e.g. Whalen 2008,). At this point, we can surmise that the financial innovations of the past decade greatly expanded the availability of credit, which then pushed up asset prices. That, in turn, not only encouraged further innovation to take advantage of profit opportunities, but also fueled a debt frenzy and greater leveraging. The Greenspan “put” (belief that the Fed would not allow bad things to happen, with evidence drawn from the arranged Long Term Capital Management rescue, as well as the quick reduction of interest rates in the aftermath of the dot.com bust), plus the new operating procedures adopted by the Fed (the New Monetary Consensus, examined in several other chapters of this volume), which include gradualism, transparency, and expectations management (meaning, no surprises) tipped the balance of sentiments away from fear and toward greed. The Clinton mid-1990s boom and the shallow 2001 recession led to a revised view of growth according to which expansions could be more robust without inflation and that recessions would be brief and relatively painless. All of this increased the appetite for risk, reduced risk premia, and encouraged ever more leverage. Much of the rosy analyses conducted during the boom relied on modern orthodox finance theory, incorporated into complex models of market behavior based on past experience. These models appeared to show that risk was systematically reduced and shifted to those best able to bear it. With the benefit of hindsight, we can now say that risks were neither shifted nor reduced.

REFERENCES

